
Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

1

Tamper Resistant Software: An Implementation

David Aucsmith, Intel Architecture Labs
Gary Graunke, Intel Architecture Labs

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE,
OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Intel
disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this
specification. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted
herein.

*Third-party brands and names are the property of their respective owners.

© Copyright Intel Corporation 1996

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

 2

Tamper Resistant Software: An Implementation

David Aucsmith, Intel Architecture Labs
Gary Graunke, Intel Architecture Labs

Abstract

This paper describes a technology for the construction of
tamper resistant software. It presents a threat model and
design principles for combating a defined subset of the
available threat. The paper then presents an
architecture and implementation of tamper resistant
software based on the principles described.

The architecture consists of segment of code, called an
Integrity Verification Kernel, which is self-modifying,
self-decrypting, and installation unique. This code
segment communicates with other such code segments to
create an Interlocking Trust model.

The paper concludes with speculation of additional uses
of the developed technology and an evaluation of the
technologies effectiveness.

Introduction

One of the principle characteristics of the PC is that it is
an open, accessible architecture. Both hardware and
software can be accessed for observation and
modification. Arguably, this openness has lead to the
PC’s market success. This same openness means that the
PC is a fundamentally insecure platform. Observation or
modification can be performed by either a malevolent
user or a malicious program. Yet, there are classes of
operations that must be performed securely on the
fundamentally insecure PC platform. These are
applications where the basic integrity of the operation
must be assumed, or at least verified, to be reliable such
as financial transactions, unattended authorization and
content management. What is required is a method
which will allow the fundamentally insecure, open PC to
execute software which cannot be observed or modified.

This paper presents the notion of tamper resistant
software. Tamper resistant software is software which is
resistant to observation and modification. It can be
trusted, within certain bounds, to operate as intended
even in the presence of a malicious attack.

Our approach has been to classify attacks into three
categories and then to develop a series of software design

principles that allow a scaled response to those threats.
This approach has been implemented as a set of tools that
produce tamper resistant Integrity Verification Kernels
(IVKs) which can be inserted into software to verify the
integrity of critical operations.

This paper describes the threat model, design principles,
architecture and implementation of the IVK technology.

Threat Model

Malicious observation and manipulation of the PC can be
classified into three categories, based on the origin of the
threat. The origin of the threat is expresses in terms of
the security perimeter that has been breached in order to
effect the malicious act which translates generally to who
the perpetrator is, outsider or insider.

• Category I - In this category, the malicious threat
originates outside of the PC. The perpetrator must
breach communications access controls but must still
operate under the constraints of the communications
protocols. This is the standard “hacker attack.” The
perpetrator is an outsider trying to get in.

• Category II - The Category II malicious attack
originates as software running on the platform. The
perpetrator has been able to introduce malicious code
into the platform and the operating system has
executed it. The attack has moved inside the
communications perimeter but is still bounded by the
operating system and BIOS. That is, it must still
utilize the operating systems and BIOS interfaces.
This is the common virus or Trojan horse attack.
The perpetrator is an outsider who had access an one
time to a system.

• Category III - In Category III attacks, the perpetrator
has complete control of the platform and may
substitute hardware or system software and may
observe any communications channel (such as using
a bus analyzer) that they wish. This attack faces no
security perimeter and is limited only by technical
expertise and financial resources. The owner of the
system is the perpetrator.

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

3

Category I attacks do not require the use of tamper
resistant software, rather, require correctly designed and
implemented protocols and proper administration. As,
by definition, the perpetrator has no direct access to the
platform’s hardware or software, Category I attacks are
better defended by robust access control mechanisms.
Frequently, the goal of a Category I attack is to mount a
Category II attack.

Category II attacks are caused by the introduction of
malicious software into the platform. The malicious
software may have been introduced with or without the
user’s consent and may be explicitly or implicitly

malicious. Examples of such software include viruses
and Trojan horses as well as software used to discover
secrets stored in other software on behalf of other parties
(such as another user’s access control information).

An important characterization of Category II attacks is
that they tend to attack classes of software. Viruses are a
good example of a class attack. Viruses must assume
certain coding characteristics to be constant among its
target population such as the format of the execution
image. Other examples would include a Trojan horse
program that searches a particular financial application
in order to purloin credit card numbers because it knows
where within that application such numbers are stored. It
is the consistency of software across platforms that
enables Category II attacks.

In an absolute sense, Category III attacks are impossible
to prevent on the PC. Any defense against a Category III
attack must, at best, merely raise a technological bar to a
height sufficient to deter a perpetrator by providing a
poor return on their investment. That investment might
be measured in terms of the tools necessary, and skills
required, to observe and subsequently modify the
software’s behavior. The technological bar, from low to
high, would be:

a) No special analysis tools required. These include
standard debuggers and system diagnostic tools.

b) Specialized software analysis tools. Tools here
include specialized debuggers such as SoftIce and
software breakpoint-based analysis tools

c) Specialized hardware analysis tools. These tools
include processor emulators and bus logic analyzers.

Our goal for tamper resistant software is to defend
against Category II attacks and Category III attacks up to
the level of specialized hardware analysis tools. We
believe that this provides a reasonable compromise. It is
an axiomatic that threat follows value, thus, this level of
tamper resistance is adequate for low to medium value
applications and high value applications where the user
is unlikely to be a willing perpetrator (such as
applications involving the user’s personal property).

Principles

It is our premise that for software to be tamper resistant it
must be immune from observation and modification
(within the bounds stated earlier). This requirement
implies that the software contains a secret component.
Operation on the secret component is the basis for the
trust that the application has not been tampered with.
Were it not for the secret component, a perpetrator could
substitute any software of their choosing for the correct
software.

It is the existence of this secret component that compels
the user to use that specific software for that specific
function rather that some other software. For example,
the secret may be a cryptographic key used to encrypt a
random challenge in an authentication protocol.
Possession of the cryptographic key creates the trust that
the software is legitimate.

As another example, consider the need to guarantee that
the software has completed a predetermined set of steps.
If each step contributed some information to the
formation of a shared secret then the presentation of that
secret would provide proof that the steps have been
executed correctly.

The design principles that we have developed are based
on the need to hide a secret in software and insure that
the recovery or alteration of that secret is difficult. Four
principles were developed:

• Disperse secrets in both time and space The secret
should never exist in a single memory structure,
where it could be retrieved by scanning active

Category
I
II
III (a)

(b)
(c)

Coverage

Target

Figure 1: Threat Model and Tamper Resistance

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

 4

memory. Additionally, the secret should never be
processed in any single operation, where anyone
monitoring code execution could easily deduce it.

• Obfuscation of interleaved operations The complete
task to be performed by the software should be
interleaved so that a little bit of each part of a task is
performed in successive iterations or rounds of the
executing code. The goal is to achieve software
atomicity, i.e., an “all or none” execution of the
software. Such interleaving could be done in a
multi-processing environment with cooperating
threads. Additionally, the actual execution should be
obfuscated to prevent easy discovery of the
interleaved component results. Such obfuscation
could be accomplished by self-decrypting and self-
modifying code.

• Installation unique code In order to prevent class
attacks, each instance of the software should contain
unique elements. This uniqueness could be added at
program installation in the form of different code
sequences or encryption keys.

• Interlocking trust The correct performance of a code
sequence should be mutually dependent on the
correct performance of many other code sequences.

None of these principles alone will guarantee tamper
resistance. Tamper resistance is built from many
applications of these ideas aggregated into a single
software entity. We have applied these principles in the
construction of Integrity Verification Kernels (IVKs)
which are small, tamper resistant sections of code that
perform critical functions.

Architecture

The tamper resistant software architecture consists of two
parts:

1. Integrity Verification Kernels These kernels are
small code segments that have been “armored” using
the pervasively mentioned principles so that they are
not easily tampered with. They can be used alone, to
insure that their tasks are executed correctly, or they
can be used in conjunction with other software,
where they provide the assurance that the other
software has executed correctly. That is, they can be
used as verification engines.

2. Interlocking Trust Mechanism This mechanism uses
the inherent strength of the IVK in a robust protocol
so that IVKs may check other IVKs. This mutual

checking greatly increases the tamper resistance of
the system as a whole.

Both of these parts are described in more detail in the
following sections.

Integrity Verification Kernel

The IVK is a small, armored segment of code which is
designed to be included in a larger program and performs
the following two functions:

• Verifies the integrity of code segments or programs

• Communicates with other IVKs

To accomplish these functions securely, an IVK utilizes
five defenses:

1. Interleaved tasks An IVK may also perform other
functions as required but all functions will be
interleaved so that no function is complete until they
are all complete. Thus, for tasks A, B, and C where
a, b, and c are small parts of tasks A, B, and C
respectively, the IVK executes abcabcabcabc rather
than aaaabbbbcccc. This is done to prevent a
perpetrator from having the IVK complete one of its
functions, such as performing the integrity
verification of the program, without performing
another function, such as verifying the correct
functioning of another IVK.

2. Distributed secrets The IVK must contain at least
one secret (or the IVK could be bypassed by any code
written to respond in a pre-determined way). In
general, one of these secrets will be a public key used
to verify digital signatures.[1] This public key would
be used to verify the integrity of the program and to
answer the challenge part of the Integrity
Verification Protocol. In accordance with one of the
previously mentioned principles, secrets are broken
into smaller pieces and the pieces distributed
throughout the IVK. In the case of public keys, they
are broken into their Montgomery components (i.e.,
power series).

3. Obfuscated code The IVK is encrypted and is self-
modifying so that it decrypts in place as it is
executed. The cipher used ensures that, as sections
of the code become decrypted, other sections become
encrypted and memory locations are reused for
different op-codes at different times.

4. Installation unique modifications Each IVK is
constructed at installation time in such a way that
even for a given program, each instance of the

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

5

program contains different IVKs. This way, a
perpetrator may analyze any given program but will
not be able to predict what the IVK on a particular
target platform will look like, making class attacks
very unlikely. The uniqueness is a property of
installation specific code segments and cryptographic
keys.

5. Non-deterministic behavior Where possible, the
IVK utilizes the multi-threading capability of the
platform to generate confusion (for an attacker) as to

the correct thread to follow.

The structure of an IVK is illustrated in figure 2. The
IVK is divided into 2N equal size cells (or code segments)
where N > 2. Each cell contains blocks of execution code
and, with the exception of the first cell, are encrypted.
Cells are not executed linearly but in a pseudo-random
order determined by a key. The cell is thus the smallest
level of granularity which is ever exposed unencrypted.
Cells are exposed by decryption one at a time.

The first cell contains the IVKs entry point. The entry
point accepts parameters and begins execution of the
IVK. Once control has been transferred to the IVK, one
of the parameters is passed to the generator function.
The generator function uses one of the parameters as the
key seed vector, KV, to a pseudo-random number
function and XORs the generated pseudo-random
number string, KG, with all of the IVK’s remaining cells

in a pseudo-one-time-pad manner. So that for an IVK,
M, which is composed of m bytes

m m mi B0 ≤ ≤

where there are a total of B bytes in M and KG is
composed of bytes kgi, then

For i = cell_size to B

 m[i] = m[i] XOR KG[i]

This sets up the initial state of the IVK. All further states
of the IVK are a function of all of the preceding states.
Thus, the initial state defines the possible values of future
states.

Once the initial state is set up, the decrypt and jump
function is executed. The decrypt and jump function
XORs every cell in upper memory with a partner cell in
lower memory and with a substitution key value. An
upper memory cell’s lower memory partner is chosen
according to the value of a transposition key. Thus the
value of each lower memory cell is a function of a keyed
substitution-transposition derived from cells in upper
memory.

The results of the decrypt component of the decrypt and
jump function is that at least one cell in lower memory
consists of valid op-codes (non-encrypted), referred to as
plaintext. The jump component then jumps to that one
plaintext cell. Once the plaintext cell has been executed,
it’s decrypt and jump function XORs every cell in lower
memory with a partner cell in upper memory and with a
substitution key value. Thus, obliterating previous
plaintext cells in upper memory and exposing at least one
new plaintext cell in upper memory and jumping to it.

The decrypt component is as follows: Given C cells in
the IVK where mi denotes a cell in C such that

m m mi C0 ≤ ≤

and

m C Ci
N∈ = and 2

There are two encryption keys, KP, the permutation key,
and, KS, the substitution key. Where KP[i] is the ith
element of q total elements and KS[i]] is the ith element
of t total elements respectively. Both keys, KP and KS,
are random bit strings.

Next, we define the partner function, P, as

P i j KP j q iN(,) ([mod])= ∨ ⊕−2 1

where i is an index of cells such that

U
pp

er
 M

em
or

y
L

ow
er

 M
em

or
y

Cell

Sig. Opp.
Other Opps.
Accumulator
Decrypt & Jump

First cell
Not encrypted
 Entry point
 Generator
 Decrypt & Jump

Encrypted

Figure 2: Structure Of An IVK

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

 6

0 2 11≤ ≤ −−i N

and j is monotonically increasing from 0

0 ≤ ≤ ∞j

Then the decrypt function is

For i = 0 to 2N-1-1

 m[P(i,j)] = m[P(i,j)] XOR m[i]

 XOR KS[j mod t]

 j = j+ 1

for odd rounds, and

For i = 0 to 2N-1-1

 m[i] = m[i] XOR m[P(I,j)]

 XOR KS[j mod t]

 j = j+ 1

for even rounds. One round being one execution of a
decrypt and jump function such that even rounds are
executed by plaintext cells in upper memory and odd
rounds are executed by plaintext cells in lower memory.

Note that KS and KP do not explicitly exist, rather; the
values KS[i] and KP[i] are derived at IVK creation and
are hard-coded.

The decryption function has many interesting properties.
By controlling specific values in KP and KS, arbitrary
cycles can be introduced. These cycles can be used to
process function calls or loop structures in the original
code. This property is an artifact of XOR exchange. To
exchange two values a and b with out using temporary
storage the following sequence can be exercised:

a a b= ⊕

b a b= ⊕

a a b= ⊕

Performing the sequence again will return the original
values of a and b thus creating a cycle.

The other property of interest is that any arbitrary end
state can be produced such that a different KG could be
needed for the IVK to run again.

Returning back to figure 2, once a decrypt and jump
function has jumped to a new cell, the new cell begins
executing the interleaved tasks in that cell. The cell first
process some part of a digital signature. For example,
one round of the hash computation or one modular
exponentiation of a Montgomery component.

Then the cell performs one part of some additional
function such as checking to see if the process is being
debugged. Any task can be performed as long as it can
be interleaved among many cells.

Next the cell executes the accumulator function. This
function computes one round of a hash function where
the current cell’s value is added into the accumulating
product. This accumulating product can be checked by
any cell to insure that all previous cells were executed
correctly and in the correct order. Given cell m, hash
function H, and the value of H at i as hi then

h H h mi i i= −(,)1

After the accumulator function has run, the cell executes
it’s decrypt and jump function and a new cell is
uncovered and begins execution.

Integrity Verification Kernel Creation

IVKs are constructed using two specialized tools. Tool 1,
which is run by the creator of the program in which the
IVK is to be embedded and tool 2, which is run at
installation time by the install script. Figure 3 illustrates
the steps in creating an IVK. In step 1, public keys are
feed into Tool 1. Tool 1 computes the Montgomery
components of the public keys and generates “C” source
code for performing digital signatures using those
components.

In step 2, the generated “C” code is interleaved with
other, pre-written “C” code, including standard

Public keys Source Code

Other Code

Object Code

Parameters IVK

Program

(1)

(2)

(3)

(4)

(5)

Tool 1

Complier

Tool 2

Figure 3: IVK Creation

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

7

preambles and footers to produce the source code for the
IVK. The source code for the IVK is then compiled in
step 3 to generate object code for the IVK.

The object code for the IVK is processed in step 4, along
with other parameters, at installation time, to generate a
vector of encrypted bytes. The encrypted bytes have a
defined entry point which is not encrypted. The
encrypted bytes are the IVK. They are then inserted into
the target program in step 5 into a location left “empty”
when the original program was created.

We will now look at each of these steps in more detail.

Step 1 In step 1, one or more public keys are fed into
tool 1 to generate “C” code that produces digital
signatures using the Montgomery components of the
public keys. The source code which is output contains
the “unrolled,” optimized code for computing a
cryptographic hash followed by the modular
exponentiation. The public keys are hard coded into the
source code as part of the mathematical operations.

Step 2 In step 2, the source code generated by tool 1 is
combined with standard pre-written source code. The
pre-written code includes the IVK’s entry code, generator
code, accumulator code and other code for tamper
detection. This step is a primarily manual step. The
code for the decrypt and jump function is not added
during this step. It is added by tool 2 in step 4.

Step 3 The combined source code is compiled by a
standard compiler in step 3 to produce relocatable object
code.

Step 4 Step 4 is performed at installation time. The
relocatable object code is processed by tool 2. Tool 2 has
the following four phases:

I. Peephole Randomization In this phase, a peephole
randomizer passes over the object code and replaces
code patterns with random equivalent patterns
chosen from a dictionary of such patterns.

II. Branch Flow Analysis In this phase, a branch flow
analyzer passes over the object code and rearranges
and groups the code into small linear code segments.

III. Cell Creation In this phase, tool 2 determines the
number of cells to be used, allocates code segments
to the cells, adds the accumulator and the decrypt
and jump functions to each cell, adds random
padding where needed, and finally, fixes-up all the
address in the code.

IV. Obfuscation Engine This, the last phase of tool 2,
generates the three random keys, KP, KS, and KG,

computes the visibility schedule for each of the cells,
computes the initial start state and encrypts the IVK.

Step 5 In the last step of IVK creation the encrypted IVK
generated by tool 2 is copied into a reserved area of the
program. The IVK is then ready to be invoked.

Interlocking Trust

Although the IVK can be made generally tamper
resistant, its ability to defend itself is greatly enhanced by
using an Interlocking Trust mechanism with other IVKs.
The Interlocking Trust mechanism consists of three
parts: Integrity Verification Kernels (described earlier),
an Integrity Verification Protocol and a System Integrity
Program. These three components work together as
illustrated in figure 4 to create an Interlocking Trust
mechanism.

As illustrated in figure 4, the objective of the mechanism
is to protect programs 1 and 2 from manipulation. As
with any non-trivial program, programs 1 and 2 are too
complex to be adequately protected. In our
implementation we create a small, verifiable, defensible
Integrity Verification Kernel. An IVK is included as a
part of both programs 1 and 2 as well as part of a system
Integrity Program which is accessible to all programs.

Each IVK is responsible for the integrity of the program
in which it is embedded. Integrity is verified by
calculating the digital signature of the program in which
they are contained and comparing the calculated
signature value with the correct, hard-coded value, stored
in an IVK itself. If desired, the IVK could verify the
integrity of any other software component, in addition to
the program in which it is contained.

Program 1 Program 2

Integrity Program

1a

1b

1c 2a

2b

2c

IVK IVK

IVK IVK

Figure 4: Interlocking Trust Overview

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

 8

A program may have more than one IVK and may
execute them at any time. As long as the IVK is actually
executed and is executed correctly, the program cannot
be modified without detection. Thus, the vulnerability
rests on IVK’s correct execution.

Each IVK is constructed according to the previously
enumerated principles to make them tamper resistant.
They are self decrypting and installation unique. All of
their functions are interleaved and self-verifying. These
mechanisms are described in detail in the next section of
this paper. But, to eliminate a single point of attack,
IVKs are interlocked so that a failure or by-pass of any
one IVK will be detected by another.

The architecture assumes that there is a System Integrity
Program running on the PC that is available to all
programs. This System Integrity Program contains a
special IVK called the Entry Integrity Verification Kernel
(eIVK), shown with a “hatched” background in figure 4,
and one or more other IVKs. IVKs within the System
Integrity Program verify the integrity of the System
Integrity Program and any IVKs embedded in the System
Integrity Program.

Upon installation of the System Integrity Program, one or
more IVKs are created that are installation unique. The
eIVK has a published, external interface that can be
called by any other IVK using the Integrity Verification
Protocol.

Using figure 4 to illustrate, program 1 executes an
embedded IVK. The IVK verifies the integrity of
program 1 and then calls (label 1a in figure 4) the eIVK.
The eIVK then verifies the integrity of the System
Integrity Program and all contained IVKs and calls
another IVK in the System Integrity Program (label 1b in
figure 4). The additional IVK then verifies the integrity
of the System Integrity Program and all contained IVKs
and calls the original IVK in program 1 (label 1c in
figure 4).

To tamper with program 1, the perpetrator would need to
tamper with both program 1 and the System Integrity
Program. However, as can be seen in figure 4, any other
program (program 2 in figure 4) will also be using the
IVKs in the System Integrity Program. Thus, to tamper
with any program all programs would have to be
compromised.

Integrity Verification Protocol

The integrity verification protocol is used to establish a
distributed trust environment. It is the protocol by which
IVKs request mutual verification as described in figure 4.

As is shown in figure 4, the protocol is a three party
communication between:

1. An IVK embedded in an application (which could be
the System Integrity Program)

2. the eIVK, and

3. an IVK embedded in the System Integrity Program.

The protocol provides a challenge/response
authentication between the IVK elements and
information (such as the success or failure of the
verification action) passed in such a way as to be bound
to the authentication.

Table 1 gives the definitions of the objects used in the
protocol. In the table, subscripts refer to the software
module where the value originates. The subscript values
may be either A, E, or S for the application module, the
eIVK module or the Software Integrity Program
respectively.

Object Definition

K X
−1 Private key of IVK embedded in module X.

K X
1 Public key of IVK embedded in module X.

AX Address of the entry point of the IVK
embedded in module X.

HX Hash value computed over the code of module
X.

RX Random value derived by module X.

FX Flag value (success or failure) of operation
originating from X. The flag is 9 bits where
each bit is the result of an operation and where
a 0-bit is a success and a 1-bit is a failure.

Table 1: Protocol Components

The protocol is a simple signed message protocol with
random values added to provide protection against
replay. Table 2 lists the information known by, and
present in each of the parties a priori. Table 2 uses the
following notation:

• M encrypted with public key of X.

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

9

K MX
1 []

• M concatenated with N.

M N|

• X sends M to Y

X Y M→ :

• Bit 0 of F is equal to the result of a test of M = N.

F M N0 = =()

Party Information

Application (A) K A
1 public key of A

KE
1 public key of E

K HA A
−1[] signature of A under A

K HE A
1 [] signature of A under E

AE address of E

AA address of A

eIVK (E) KE
−1 private key of E

K HE E
1 [] signature of E under E

AS address of S

System Integrity
Program (S)

KS
1 public key of S

KE
1 public key of E

K HS S
−1[] signature of S under S

K HS E
−1[] signature of E under S

K HE S
1 [] signature of S under E

AE address of E

Table 2: Initial state knowledge of participates

The protocol can be described in the following steps:

1. A verifies signature of A and reports any failure

 F H K K HA A A A0
1 1= = −([[]])

2. A sends signature, flag, and random number to E

 A E K K H F A RE E A A A→ : [[]| | |]1 1

3. E verifies signature of E and reports any failure

 F H K K HE E E E1
1 1= = −([[]])

4. E verifies signature of A and reports any failure

 F H K K HA E E A2
1 1= = −([[]])

5. E sends signature and address of A, flag and random
number to S

 E S K H A F RE A A E→ −: [| | |]1

6. S verifies signature of S and reports any failure

 F H K K HS S S S3
1 1= = −([[]])

7. S verifies signature of E and reports any failure

 F H K K HE S S E4
1 1= = −([[]])

8. S verifies signature of A and reports any failure

 F H K HA E A5
1= =([])

9. S sends E signature, flag and random number

 S E K K H F RE E S E→ : [[]| |]1 1

10. E verifies that received random number is the same

 F R K K RE E E E6
1 1= = −([[]])

11. E verifies signature of S and reports any failure

 F H K K HS E E S7
1 1= = −([[]])

12. E sends flag and random number to A

 E A K F RE A→ −: [|]1

13. A verifies that received random number is the same

 F R K RA E A8
1= =([])

14. A verifies that flag equal 0 and reports any failure

 ()F = 0

The above protocol is not particularly efficient but is
reasonably robust. It requires no prior knowledge of the
application from the other parties is the case given the
installation specific uniqueness.

Proceedings of the 1996 Intel Software Developers’ Conference
Also published in the Proceedings of the First International Workshop on Information Hiding, 1996, Cambridge, U.K.

 10

System Integrity Program

The System Integrity Program is a program module that
constantly monitors the integrity of the security
components of the computer system. While the System
Integrity Program monitors the integrity of the security
components, it depends on the eIVK to monitor its own
integrity.

The System Integrity Program is created at installation
time so that both the eIVK and the embedded IVK can be
made unique. The System Integrity Program insures that
the eIVK has a known entry point an a known public key.

Technology Extensions

The current design of the IVK could be expanded in
numerous ways to make it more effective. These
technology extensions fall into two broad categories:
active defense and hardware assisted protection.

Active defense is code, added to the IVK, that detects
attempts to observe or modify the execution of the IVK
and then fights back. Detection possibilities include
scanning running code for “signatures,” much the way
viruses are detected. Signatures of debuggers or
emulators can be scanned. Additionally, one may look
for specific interrupt vectors which are used by particular
programs. Once detected, the IVK may disconnect
interrupts used by the debugger or modify the target’s
code so that it fails.

Hardware assisted protection uses some characteristic of
the hardware to assist the software tamper resistance.
Several techniques are currently under investigation.
The first utilizes the processor’s execution counter to
measure the time used by the process. Once this is done
then the secret, a private key, is not actually stored in the
IVK using tool 1, as described earlier, but, rather, the
statistical timing characteristics of operating on the secret
are stored instead. The IVK then guesses at the correct
key and utilizes the timing characteristics in an auto-
correlation process to derive the secret. Any attempt to
manipulate the code while the auto-correlation is
executing would keep the IVK from deriving the correct
secret. This method is a use of Kocher’s cryptanalysis of
fixed exponent systems.[2]

Additional hardware assistance can be derived by locking
the execution of the IVK in the processors on-chip cache.

Conclusion

This paper presented an implementation of tamper
resistant software. The true resistance of which can only
be judged empirically. As such, only time will confirm
whether the principles described herein are valid and the
implementation sufficient.

Acknowledgment

The authors would like to thank the many people who’s
comments, criticism, and abuse have keep use refining
our approach.

References

 [1] Rivest, R., Shamir, A., and Adleman, L. A Method for
Obtaining Digital Signatures and Public-Key
Crypotsystems. Communications of the ACM, vol. 21, issue
2, Feb. 1978, pp. 120-126.

[2] Kocher, P. Cryptanalysis of Diffie-Hellman, RSA, DSS,
and Other Systems Using Timing Attacks. Private Extended
Abstract, 7 December 1995.

